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Abstract 

Four types of static tensors can be distinguished ac- 
cording to their parity with respect to space inversion 
and to time reversal. However, all magnetic point 
groups belonging to the same (oriented) Laue class 
consist, apart from inversions, of the same proper rota- 
tions. Tensors differing only by parities transform 
identically under the same proper rotations; their trans- 
formation properties under different groups of the same 
Laue class may therefore differ only by an additional 
change of sign, which depends on the tensor parity and 
on the way in which inversions are combined with 
proper rotations in a given group. It is shown that, for 
a certain natural choice of typical representations of 
magnetic point groups of the same Laue class, it is 
sufficient to calculate tensorial covariants (symmetry- 
adapted tensorial bases) of even parity with respect to 
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both space inversion and time reversal for the group of 
proper rotations. Tensorial covariants of other parities 
and for other magnetic point groups of the same Laue 
class can then be obtained by the use of a simple con- 
version table and of parity arguments. The scheme 
is illustrated by an example from the Laue class D 4. 

1. Introduction 

In the preceding paper (Kopsk~,, 1979) it has been 
shown how to find tensorial covariants with the help of 
standard tables of Clebsch-Gordan products (Kopsk~, 
1976a, b). Lists of tensorial covariants were also given 
for the 32 crystal point groups and for tensors up to the 
fourth rank describing nonmagnetic properties. 

It is desirable, especially for the purposes of the 
phenomenological phase transition theory, to know 
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96 TENSORIAL COVARIANTS FOR MAGNETIC POINT GROUPS 

tensorial covariants for the 122 magnetic point groups 
and for tensors of properties connected with the 
application of the external magnetic field. We can, of 
course, perform the routine calculations in the same 
way as before for each of the groups. The volume of the 
work and of the tables will, however, substantially 
increase. 

The consideration of tensorial covariants can be 
simplified to a great extent if we take the structure of 
magnetic point groups and the relation between trans- 
formation properties of various tensors into account. 
The relationship between the equilibrium form of 
tensors in correlation with the symmetry groups has 
already been studied (Sirotin, 1962; Freeman & 
Schmid, 1975; Kopsk~,, 1976c). The theory of tensorial 
covariants gives even better insight into the situation 
than do these studies; while the equilibrium tensors are 
unambiguously determined by the symmetry group, the 
tensorial covariants also still depend on the choice of 
REP's (irreducible or physically irreducible repre- 
sentations) with which we associate them. It appears 
that the most natural choice of typical representations 
also leads to the clearest relationship between 
covariants for different groups belonging to the same 
Laue classes. This paper describes the choice of REP's, 
elucidates the relation between covariants, and demon- 
strates the simple scheme which arises by an example 
from the Laue class D 4. 

In the following we use the Schoenflies notation for 
magnetic classes (Dimmock & Wheeler, 1966) and the 
international notation (Opechowski & Guccione, 1965) 
with indices specifying the orientation of generators for 
specifically oriented groups. Space inversion is denoted 
by i, time reversal by e', and their combination by i'. 
Special symbols are used for the three inversion groups • 
I = C i - 1 : {e,i}; E '  = C[ = 1' -- {e,e'}; I '  = C i ( C  ~) 
= 1' = {e, i '  }; and for the full inversion group E 0 = C[ 
= [1' = { e , i , e ' , i ' } .  The symbols SO(3), 0(3) = SO(3) 
x I, and 0 ' (3)  = 0(3) x E '  = SO(3) x E 0 mean the 
proper orthogonal group, the full orthogonal group, 
and the general space-time rotation group [the last 
term is taken from Opechowski (1974) (this paper is 
also included in Freeman & Schmid, 1975)1, which 
contains all magnetic point groups (including 
noncrystallographic ones). 

2. The four kinds of  tensors 

In classical physics w~ distinguish four types of tensors 
according to their parities with respect to space 
inversion i and to time reversal e'. The simplest tensors 
are the four scalars: the trivial or/-scalar, the/-pseudo- 
scalar e, the c-scalar r, and the c-pseudoscalar e~:. Each 
of the scalars is invariant under the proper rotation 
group SO(3) and belongs to one of the four REP's  F~, of 
the full inversion group E 0, where v = +, - ,  and tz = e, 
m, denote the even and odd parities with respect to i 

and e' respectively. With reference to the group O'(3) 
the scalars transform according to the four possible 
scalar REP's D~ )~ = D t°). F~, where D t°~ is the scalar 
(identity) REP of SO(3). 

There are also four types of vectors: pseudovectors 
p = xp~e i, ordinary vectors v = xv~e ~, magnetic-type 
vectors m = Xm~ % and current* (velocity)-type vectors 
j = xne r Each of these four vectors forms a carrier 
space L~, for one of the four vector REP's  V~, of the 
group 0'(3).  Each of these REP's assigns to the 
element g E 0 ' (3)  an operator V~(g) or, using letters 
instead of parity labels, P(g), V(g), M(g), and J(g), 
which acts on the space L~ e, L~e, L;~m, and L~m 
respectively• In appropriate complex bases, these are 
the four vector REP's D~, ~)~ = Dm. £~ of the group 
0'(3),  derived from the vector REP ~3m of SO(3), 
known from the theory of quantum angular momenta 
(Lyubarskii, 1958). In Table 1 we give the REP's F~,, 
the symbols for scalar and vector quantities, and the 
names of scalars and vectors according to Birss (1962, 
1963, 1964) (these are used here)• 

A general tensor of rank k = ke + + k~ + k+m + k m is 
an element of direct product of direct powers of spaces 
I_~, and we have to distinguish its partial ranks ke +, kT~, 
k~, and k m in pseudovector, vector, magnetic-vector, 
and current-vector indices respectively• The space of 
such tensors carries a representation A of the group 
0 ' (3)  which assigns to each element g C 0 ' (3)  an 
operator 

A(g) = pk~(£) ® Vk;-~) ® Mk+(g) @ j k,.;,(£.)• (1) 

Concerning the transformation properties, which are 
our sole interest here, we can interpret a certain vector 
of the four kinds as a pseudovector multiplied by a 
corresponding scalar and the representation V~ as the 
representation P multiplied by F~,. Then we can rewrite 
(1) as 

A(g) = £ j .  P* (g), (2) 
where 

I~v u = (I~e )ke +k~• (I'N-mm)k++k2"• (3) 

We shall, as in the preceding paper, work with 
adjoint spaces. Then we can write for the transforma- 
tion properties of components of a tensor u with partial 
ranks ke +, k~-, k+m, and kin: 

l'l il i 2 . . .  ik+, j l j z  . . . jke , hl h2 . . .  hk +, ll h . . .  Ikm 

X p i  I X p i  2 . • .  Xpik+ • Xpj l  Xvj2 • •• XVJke " 

• X m h  , X m h z ' ' '  Xmhk+," X j l ,  X j l 2 • ' "  Xjlk= 

,~ ( ~ ) k e  + kTn ( O k : +  kin. Xp i l  Xpi2 . .  . X p i k e .  Xp j l  Xpj2 . .  " X p j ~ .  

• X p h  ' X p h 2 . . .  X p h , + . X p l  ' X p h . . .  X p l k ;  , (4) 

* We mean here a time-reversible current  which is not  accom- 
panied by entropy production.  It can be physically interpreted as 
the superconducting current. Tensors  in which the current  vector  
indices are present appear naturally in our algebraic scheme but we 
have to consider them as hypothetical  since their physical meaning 
is not yet quite clear (Ascher,  1966). 
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Table 1. Irreducible representations of  the full  inversion group E o and vector representations of  the general 
space-time rotation group 0 ' (3 )  = SO(3) x E 0 

Scalar Name of (Birss) Vector REP Birss name 
REP e i e' i' quantity scalar of 0'(3) Name of vector of vector 

/~e 1 1 1 1 1 /-scalar P [D$ l~+] pseudovec to r  i-pseudovector 
/~e 1 - I 1 - 1 s i-pseudoscalar V [Die 1~-] vector (polar) /-vector 
F~ 1 1 --1 -1 r c-scalar M [D~ ~+] magnetic vector  c-pseudovector 
FT, 1 -1 -1 1 sr c-pseudoscalar J [D~ ~-] current vector c-vector 

where the symbol ~ means ' transforms like'. The sym- 
metrization or, as it is often called, the particulariz- 
ation of tensor indices can be performed only within 
those vector indices which belong to the same kind of 
vector. With this in mind, we can rewrite (4) in a 
simpler form 

U i "~ (e)ke+km(r)k+m+km.  Ui , ( 5 )  

where, to avoid unnecessary crowding of indices, we 
collect them into one index i, which comprises many 
vector indices and the symmetrization. Generally, 
many tensors u on the left-hand sides of relations (4) 
and (5) may correspond to the expressions on the right- 
hand sides. Corresponding tensor spaces are, of course, 
different but they are transformed in the same way by 
all elements of the group 0 ' (3 )  (and also by the 
respective group of permutation of indices). 

Relations (4) or (5) separate the transformation 
properties of tensor u with respect to proper rotation 
group SO(3) from its parities (transformation proper- 
ties with respect to the full inversion group E0). The first 
ones are wholly contained in the tensor v, while the 
parities are defined by the product (6)kZ+k;.(r)*~++*;., 
which is one of the four scalars. We shall say that u is a 
17, tensor if the parities belong to the REP F ~. o f E  0. Evi- 
dently, any tensor belongs to one of the four 1~, types. 
Correlation of this parity nomenclature with the usual 
nomenclature (where the adjective 'axial '  and the prefix 
'pseudo' are used on the same basis) and with a termi- 
nology used in the Russian literature is given in Table 2. 

Table 2. Correlation of  tensor classifications 

Birss 
This paper c - -  - -  ^ 

kth rank k even k odd Russian literature 

l~-tensor polar/-tensor axial/-tensor even-type tensor 
l~--tensor axial/-tensor polar/-tensor electric-type 

tensor 
l,+,-tensor polar c-tensor axial c-tensor magnetic-type 

tensor 
I m-tensor axial c-tensor polar c-tensor electromagnetic 

tensor 

3. Magnetic point groups belonging to the same Laue 
class 

Let G be a proper rotation group oriented in a certain 
way with respect to the standard Cartesian frame of 

reference. We say that a magnetic point group H 
belongs to (oriented) Laue class G if, apart from 
combinations with inversions i, e', i', the group H 
consists of the same rotations as G. The procedure of 
constructing the classical groups from groups of proper 
rotations (Altmann, 1963) and of magnetic point 
groups from the classical ones [Shubnikov, 1951 (see 
also Shubnikov & Belov, 1964); Tavger & Zaitsev, 
1956; Opechowski & Guccione, 1965; Kopsk2), 1976c] 
by the use of halving groups is well known and has 
been discussed many times. Let us recall that 
magnetic point groups derived in this way from a 
certain classical group F are said to form a magnetic 
family F (Opechowski & Guccione, 1965). We shall use 
here the fact that each halving subgroup of a given 
group is a kernel of an alternating REP, i.e. of the REP 
which has characters +1 or - 1  only; the halving 
subgroup then corresponds to those elements which 
have characters +1. The magnetic point groups 
belonging to the Laue class of the group G can be 
classified as follows. 

(i) Groups isomorphous with G - the proper rotation 
group. If F ( G )  is an alternating REP of G, then F,, -- 
KerFs (G)  4 G is a halving group of G. We can 
construct a noncentrosymmetric group H = F,, + i(G 
- F~) by combining elements of the coset G - F with 
space inversion. In the same way we can construct 
other magnetic groups by combining the elements of 
the coset with e' or with i'. This will exhaust all 
magnetic point groups isomorphous with G, if G has 
only one alternating REP. If G has two such REP's  
F,,(G) and /'~(G), then necessarily it also has a third 
such REP Fv(G ) - F~(G) F (G) It is easy to show that - -  . ~° • 

the three corresponding halving subgroups F ,  F#, and 
F v have a common halving subgroup (a quartering 
group of G) F,~#v = F,~ O F# N Fv<] F,~, F#, F v (in fact, 
F ~  v is an intersectmn of any two of the groups F~, F~, 
Fv). Factorizing G with respect to F,,#v: 

G = Fa]31 , + F 1 + F 2 q- F3,  (6) 

w h e r e  E l = F - -  F ~ , F,, : F , 5 -  F a # p ,  F 3 = F ~ , -  Fa/$v , a a/.~p z 
we can see that the groups isomorph0us with G must 
have the form: 

m : Fo~B~ , q- ~]lFl + ~2F2 -a t- ~3F3 , (7) 

where e, yl, y2,), 3 form a subgroup of E 0 ()'i are not 
necessarily different). Each group (7) is unambigu- 
ously characterized by two REP's  F,~(G) and F~(G) 
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in such way that the cosets G - F ,  G - F~ are, in the 
resulting group H, combined with space inversion and 
time reversal respectively. It should be noted that 
elements of the cosets are those which, in a given REP, 
have the characters - 1 .  Some of these groups thus 
derived may belong to the same magnetic class - this 
will occur if there is an automorphism of G which is 
equivalent to the exchange of alternating REP's  (such 
automorphism is necessarily an outer automorphism). 
Magnetic groups with the same F~(G) but different 
F~(G) consist, apart from combinations with e', of the 
same elements of 0(3)  and belong to the same magnetic 
family H,,. 

(ii) Groups isomorphous with G h = G x I -  the 
centrosymmetric group. We distinguish here two kinds 
of groups. (1) Groups of the magnetic family Gh. These 
are groups which can be obtained by combining 
elements of a coset to a halving subgroup of G ~ with e'. 
Again, each such halving group is a kernel of an 
alternating REP of G h. (2) Paramagnetic groups. To 
each classical group H,~ = F,~ + i(G - F,~) and particu- 
larly also to the group G itself there corresponds a para- 
magnetic group H" = H,~ x E ' ,  isomorphous with G h. It 
can be shown that by this are exhausted all groups of 
the (oriented) Laue class G isomorphous with G k. 

(iii) The centrosymmetric paramagnetic group 
G/, = G x E 0 has no isomorphs within Laue class G and 
contains all groups of this class as its subgroups. 

4. Tensorial covariants for groups of the same Laue 
class 

Let us suppose that we have calculated covariants of 
tensor v from relations (4) or (5) for a proper rotation 
group G. We want to find tensorial covariants of the 
tensor u for all groups of the (oriented) Laue class G. 
The form of these covariants depends on the orientation 
of these groups which is given by the orientation of G 
and on the choice of their typical representations. For a 
given choice of the typical representation of G, the 
covariants of v can be calculated by the use of 
Clebsch-Gordan  products. Below we show that a 
certain, quite natural, choice of REP's  for the iso- 
morphs of G leads to such simple relations between 
covariants of tensors v and u that the latter can be 
found almost immediately. The explanations will be 
illustrated by an example from Laue class D 4 in which 
we start from the proper rotation group oriented as 
given by the symbol 4 z 2x 2xy. 

4.1. Groups isomorphous with G 

An example of a choice of a typical matrix 
representation is given in Table 3 for the group 4z2x2xy. 
Each REP assigns to each element a matrix, but it is 
sufficient to give only the matrices of generators. The 

typical variables, written with symbols of REP's  trans- 
form as follows: 

4zX 1 = x~, 4 z X  2 = X 2, 4 z X  3 = - - X  3, 4 zX4  = --X4; 

2xX ~ = x~, 2 x X  2 -= - -X  2, 2 x X  3 = X3, 2 x X 4  = --X4; 

4~(x,,y,)  = (.ys, --x5), 2x(x,,Y,) = (xs,--Ys). (8) 

For groups isomorphous with G we use the following 
convention: the REP's  of the same numerical label 
assign to an element of a group H isomorphous with G 
the same matrix as to its proper rotation part in the 
group G. All groups isomorphous with the group 
4 z 2x2xy are written in the first column of Table 4. We 
shall obtain their typical representations according to 
this convention if we replace, in Table 3, the generators 
4 z and 2 x by those generators of a given group which 
stand in the same place in the international symbol. 
With such a choice, the covariants of tensor v will have 
the same form for all groups isomorphous with G, 
because v is insensitive to space inversion and time 
reversal. 

The tensor u differs from the tensor v only by a 
factor (,s)kz+kF.,('Ok+.,+k-d, which transforms as one of the 

Table 3. Typical representation o f  D 4 (4z2x2xy) 

4z 2x 

Fl (x l )  1 1 
F2( x 2) 1 - 1  
F3(x3) - 1  1 
F , (x , )  - 1  - 1  

(°-I) (o_°) 

Table 4. Magnetic point groups isomorphous with D 4 

(4z2x2xy); REP's corresponding to halving subgroups 
and transformation properties of  nontrivial scalars 

Class Group i e' e r er 

D4 4z2x2x r F1 Fl Xl Xl Xl 
D4(C4) 4z2x2xy F~ /'2 x~ x 2 x 2 
D4(D2) [4'~2x2"y F, F 3 x, x 3 x 3 

[4'~2"2xy F, /'4 x, x n x,  

C4~ 4.mxmxy F 2 F 1 x 2 x ,  x 2 
C 4 p ( C 4 )  4~ m" m~y F 2 F 2 X 2 X 2 X 1 
C4.(C2~) [4'~mxm'x. 1"2 1"3 x2 x3 x4 

~4'~rn" mxy r 2 F 4 X 2 X 4 X 3 

D2a ~z 2xmxy F3 1"1 x3 xl  x3 
D2d(S,) 4~ 2" m'y F 3 F 2 X 3 X 2 X 4 

D2d(D 2) 4' z 2xm'y F 3 1" 3 x 3 X3 Xl 
D2a(C2v ) 4' Z 2" mxy 1" 3 F 4 x 3 x 4 x z 

D2a ~ m x 2 x y  1"4 1"1 x4 xl  x4 
O2a(S,) 4~m" 2"y F 4 F 2 X, X 2 X 3 
D2d(C2~) 4'~m~2x, 1"4 1" 3 x 4 x 3 x 2 

D2d(D 2 ) 4'. m'2~r F 4 /'4 X4 X4 X1 
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typical variables belonging to a one-dimensional 
(identity or alternating) REP of the group in question. 
If this factor is the trivial scalar, then it transforms like 
x~ for all groups isomorphous with @; the covariants of 
tensor u are the same for all these groups and have the 
same form as the covariants of tensor v. Otherwise, the 
factor is either e, r or their product er. If, for a given 
group, the space inversion is combined with elements of 
the coset G - F,~ to the subgroup F,~ = Ker F~(G), the 
time reversal with elements of the coset @ -- F~ to the 
subgroup F~ = Ker Fo(G), then, under this group, 
transforms like x,~, 7: l~ke x~, and er like the product 
x~x~ ~ x v. For, groups isomorphous with 4~2x2xy we 
give the REP s F ( @ ) ,  F~(G) in columns under i and e', 
the. variables x,~, x~, a n d  xv in columns under e, r, and 
er in Table 4. 

The relationship between covariants of v and u can 
be found from a simple conversion table which shows 
how transformation properties of variables change 
when multiplied by a variable x,~, belonging to an 
alternating REP F~(G). This conversion table is part of 
the Clebsch-Gordan table and we give it for the groups 
4~2x2xy as Table 5. The first row lists the typical 
variables for the group, the first column the variables 
belonging to alternating REP's.  On the intersection are 
given the resulting typical variables. 

Table 5. Conversion table 

x~ x2 x3 x4 (xs,ys) 

x2 xl x4 x3 (Ys, --xs) 
X 3 X 4 X 1 X 2 (Xs,--Y 5) 
X4 X3 X2 Xl (Ys' X5) 

linear combinations from components of a tensor ev 
forms a Fg covariant for all groups of the magnetic 
family G k. To find the transformation properties of  rv 
and of erv, we have to recall that, for a given group of 
the family, there exists an alternating REP/-~B(Gh) such 
that the group is obtained from G h by combining with 
e' those elements of G h which have, in the REP F~(G~,), 
characters --1. Hence r transforms, in the resulting 
group, as x~ and er as x- ;x  ~.~ The changes in co- 
variants can be again found by the use of the same 
conversion table as before, taking additionally the 
multiplication of parities into account. The groups of 
magnetic family 4z/mzmxmxy, REP's  which correspond 
to e', and typical variables which correspond to e, r, 
and er are given in Table 6(a). 

4.2.2. Paramagnetic groups. These groups are of the 
form H' = H x E ' ,  where H is a classical isomorph of 
@. Here we choose first the REP's  of H in the same 
manner as in {}4.1, and for REP's  of I-t' we use an addi- 
tional parity label e or m, so that the REP /'~e(H') 
assigns the same matrix D~'~)(g) to g E H and to g' = 
e'g, while F~m(H' ) assigns this matrix to g and its 
negative to g'. 

A set of linear combinations of components of tensor 
v, which forms a F covariant in G, then forms a Fae 
covariant in all these groups; r transforms like X~m and 
hence the same linear combinations of rv form a 1-'Ao, m 
covariant for all these groups. If  e transforms like x~ m 
H, then it transforms like X~e in H' and er transforms 
like x- in H' The change of covariants can be again pm 
found from the conversion table. This information for 
paramagnetic noncentrosymmetric groups of the 
(oriented) Laue class 4z2x2xy is collected in Table 6(b). 

4.2. Groups isomorphous with @ h 

Here it is suitable to choose the REP's  in a different 
manner  for groups of magnetic family G h and for the Class 
paramagnetic isomorphs of G h" 

4.2.1. Groups o f  magnetic fami ly  G k. The number of 
REP's  of G h is twice that of G and we distinguish them 
by parity labels + and - .  I f / '~(@) assigns a matrix 
D('~)(g) to an element g C G, then F+(G) assigns this 
matrix to both g and ig, while ~ (G) assigns this matrix 
to g and its negative to ig. To an element g C @~, there 
corresponds, in a given magnetic group of the family 
G h, either g or g' ---- e'g. For REP's  of magnetic groups 
we use the following convention: the REP of the same 
numerical and parity label assigns the same matrix to 
an element g E G h as to the corresponding element g or D~ 
g' of a magnetic group. C~v 

Then, if a certain set of linear combinations of D'2a 
components of tensor v forms a / ' ~  covariant for the 
group G, it evidently forms a ~ covariant for all 
groups of the magnetic family G h. The pseudoscalar 
transforms like x i- and accordingly the same set of 

Table 6. Nonparamagnetic,  noncentrosymmetric 
paramagnetic and centrosymmetric paramagnetic  point 

groups 

Group e' e z ez 

(a) Nonparamagnetic point groups isomorphous with D4h 
(4z/m~mxmxy): REP's corresponding to halving subgroups and 
transformation properties of nontrivial scalars 

D4h 4z/mzmxmxy 1~1 x 7 x~ x? 
O4h(Cah) 4z/m~m'xm'xy F~ x-f x~ x{ 
O4h(O2~) t4'ffmzmxmxy 1~3 x; x~ x; 

~4'ffm~m'xmxr 1~4 x 7 x~ x z 
D4h(D 4) 4z/m'zmrxmrxy ~ x~ x-f x + 
D4h(C4v) 4z/rn'~mxrnxy Fg x 7 x{ x~ 
D4h(O2a) t4'z/m'~mxm'y ~ x-( x{ x~ 

[4'z/m'zm" mxy ~ x-f x 2 x4 + 

(b) Noncentrosymmetric paramagnetic groups 

4z2x2xy 1' Xle Xlr a Xlm 
4zmxrnxy 1' X2e Xim X2m 

{4~ 2xmxy I' 4 =zmx2xy 1 ¢ X3e Xlrn X3rn 
X4 e Xlm X4m 

(c) Centrosymmetric paramagnetic group D'4h (4ffmzmxm~,y. 1'): 
transformation properties of nontrivial scalars 

D~h 4z/mzmxmxy. 1' XTe X+m XIm 
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4.3. The  cen t rosymmet r i c  p a r a m a g n e t i c  group  G], = 
x E  o 

To each REP F,~(G) there correspond four REP 's  
F2,(G'h) = F,,(G).F~,(Eo).  Accordingly, if a certain set 
of linear combinations of v forms a F,, covariant in G, 

' and the same then it forms a F + covariant in G h ~e 
combinations of tv, rv, and t ry  form the F-de, F~m, and 
F-d~,, , covariants in G ~,, respectively, as indicated in Table 
6(c). 

Corollary: It is sufficient to know tensorial covariants 
of tensors v with only pseudovector indices for the 
proper rotation group in order to find tensorial 
covariants of tensors u, related to v by (4) or (5), for 
all magnetic point groups of the (oriented) Laue class 
defined by this group. Tables analogous to Tables 4, 5, 
and 6 are easily found. Covariants of tensors v up to 
the fourth rank can be rewritten from the lists of the 
preceding paper. I shall finish with an illustrative 
example. 

5. An example 

In Table 7 are given some tensorial covariants of parity 
1~ + for the group 4~2x2xy. Notation: p~, P2, P3 are the 
components of the pseudovector; the u~k in the usual 
abbreviated notation u~ = Ux~, u 2 = uyy, u 3 = Uz~, u 4 = 
2uy~, u s = 2Uzx, u 6 = 2Uxy represent the symmetric 
second-rank tensor which transforms like (1/2) (p.,o~, + 
Pt, P}); the antisymmetric second-rank tensor is repre- 
sented by the psuedovector itself, because p~ trans- 
forms like 8 i j~ jP~  where ~ijk is the Levi-Civita tensor, 
so that p~, P2, P3 transform like (PzP~ - P3P~), (P3P ' I  - -  

P~P'3), (P~P'2 -- PzP'~) respectively; finally, 3ij means the 
tensor which transforms like p~uj  (i = 1,2,3; j -= 
1,2, 3, 4, 5, 6). These covariants can be simply rewritten 
from the list of covariants for the group 4 z 2 x 2xy of the 
preceding paper, because, in this group, vector and 
pseudovector, tensor 6~j and piezoelectric t e n s o r  dij 
have the same covariants and u is the same in both 
cases. 

From Table 7 and by the use of Tables 4, 5, and 6 we 
can now deduce the tensorial covariants of: polariza- 
tion P ~ ~p, magnetization M ~ Tp, current vector j ~ 
evp, gyration tensor g ~ tu, symmetric ~s ~ eru and 
antisymmetric la A ~ t rp  parts of the magnetoelectric 
tensor ~t, piezoelectric tensor d ~ e6, piezomagnetic 
tensor z~ ~ rS, and such hypothetical tensors as 
magnetoconductivity eu O ~p, electroconductivity 
ru 0 vp or piezoconductivity ev8 (Ascher, 1966), for all 
groups of the (oriented) Laue class 4fix2xy. 

Let us, for example, consider the symmetric and anti- 
symmetric parts of the magnetoelectric tensor la. The 
first row of Table 8 gives the covariants of la for all 
those groups in which tz- transforms like x 1, i.e. for 

' ' - '  ' - ' I f t h e  groups 4z2~2xy, 4~mjm~y, 4~2xmxy, and 4zmx2xy. 
covariants are additionally supplied with parity labels 
- ,  +, m, and 1 m, they will be relevant to groups 
4 f f m z m ~ m x y  , 4z/m'zm'm'xy,  4~2x2xyl', and 
4 z / m z m x m x y l '  respectively. The second, third and 
fourth rows are reorganized according to conversion 
rules as if the covariants are multiplied by x 2, x 3, and x 4 
respectively. Accordingly, the second row gives the co- 
variants for those groups for which er t ransforms like 

-? F x 2, i.e. for groups 4z2x2xy, 4zmxmxy ,  4z2xmxv, and 
4',.mx2'~y as well as for groups 4ffm~m~mxy, 
4ffm'~m~mxy, and 4 z m x m x y l ' ,  where the covariants 
have to be supplied with parity labels - ,  +, and m re- 

Table 7. Covar ian t s  o f  s o m e  l +e tensors  f o r  L a u e  class D 4 (4 z 2x2xy) 

r,(x,) G(x2) /'3(x~) Q( x,) R~" ( x,,y,) 

P3 (Pl,P2) 
U 1 + U 2 U 3 Ul -- U 2 U 6 (U4,--U 5) 
6 1 4 -  625 631 + 632'633 6 3 1 -  632 (611,629 (612,621) (613'., 623) 

615 + 624 614 -k- 625 636 615 -- 624 (626 , 616 ) (635 , 634 ) 

Table 8. Covar ian t s  o f  the magnetoe lec t r ic i ty  tensor  

Fl(xl) F2(x2) F3(x3) F4(x4) R~1)(xs,Ys) 

U ~ ~,U~) 3 S . S) Xl /./~ + U S U S /dr --[ .If  /'/S (fl4'--/'~5 3 
ul (u~,-uO 

x2 u~ + u s ug uS uf - u  s ,,-s"'s,',-,9 

6u, ,-~2) 
(ttS! S) x,  u s - u s u s u s + uS u s , - ,  ,s  

u~ (ul ,uO 
x,  us uS - u s u ~, + u s u s3 (us,s -u,s ) 
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spectively. Analogously, the third and fourth rows give 
the covariants for those groups in which er transforms 
like x 3 or x 4, without or with parity labels. 
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Abstract 

The joint probability distribution of all structure factors 
Eh_hj ( i , j  = O, ..., m) in an (m + 1) x (m + 1) Karle-  
Hauptman matrix is derived for structures in the space 
group P1. 

Introduction 

The joint probability distribution of the normalized 
structure factors gho-hm, Ehl-hm, ... and Ehm__hm 
where h0, . . . ,  hm_ l are fixed and h m is the primitive 
random variable leads via the conditional joint prob- 
ability distribution of the phases tPh0-h~, ..., tPhm_,-h, 
to the maximum-determinant rule for phase determina- 
tion: the most probable values for the phases ~0h0-h,, 
.... ~0hm_,-h, are those for which the determinant of the 
Karle-Hauptman matrix (Karle & Hauptman, 1950) 
with last column Eho-h~, . . . ,  Ehm_:hm, Eo takes on its 
maximum value (de Rango, 1969; Tsoucaris, 1970). 
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The distribution of only one structure factor, say 
Eh0-hm, is obtained by fixing the magnitudes and phases 
of Ehl_hm,...,Ehm_l_hm. The maximum of this 
distribution gives the most probable value for Eh0-h,, 
expressed in (i) the Eht-hm (i = 1, . . . ,  rn -- 1) and (ii) 
the remaining structure factors in the Karle-Hauptman 
matrix (de Rango, 1969; Tsoucaris, 1970). From a 
probabilistic point of view the structure factors (i) and 
(ii) are of a different nature since for (i) the Eh,-hm are 
fixed but the reciprocal-lattice vectors h i -- h m are not, 
while for (ii) the reciprocal-lattice vectors are fixed. 

We shall show that it is possible to treat all structure 
factors in the same way. For structures in space group 
P1 we shall derive the joint probability distribution of 
all structure factors Ehi_hj in a Karle-Hauptman 
matrix, where all hi, hj are primitive random variables. 
Two different routes will be followed. The first is 
straightforward and does not resort to any previous 
work on determinants. The second involves conditional 
joint probability distributions and shows both the 
similarities and differences from the earlier probability 
calculations that led to the maximum-determinant rule. 

As will be shown in the following paper the joint 
probability distribution of all structure factors in a 
Karle-Hauptman matrix leads to new functions whose 
maxima correspond with the most probable values for 
structure-factor phases. 
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